Face hallucination based on morphological component analysis
نویسندگان
چکیده
In this paper, we formulate the face hallucination as an image decomposition problem, and propose a Morphological Component Analysis (MCA) based method for hallucinating a single face image. A novel three-step framework is presented for the proposed method. Firstly, a low-resolution input image is up-sampled via an interpolation. Then, the interpolated image is decomposed into a global high-resolution image and an unsharp mask by using MCA. Finally, a residue compensation is performed on the global face to enhance its visual quality. In our proposal, the MCA plays a vital role as MCA can properly decompose a signal into several semantic sub-signals in accordance with specific dictionaries. By virtue of the multi-channel decomposition capability of MCA, the proposed method can be also extended to simultaneous implementation of face hallucination and expression normalization. Experimental results demonstrate the effectiveness of our method for the images from both lab environment and realistic scenarios. We also study the contribution of face hallucination to face recognition in the case that probe images and gallery images are under different resolutions. The main conclusion is that the contribution is significant when using local facial features (e.g., LBP), but unobvious when using holistic facial features (e.g., Eigenfaces). & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Face Hallucination Based on Eigentransformation Learning
In this paper, we study face hallucination which refers to inferring a high-resolution (HR) face image from the input low-resolution (LR) one. We advance an eigentransformation method [1] based on principal component analysis (PCA) for face hallucination by exploring the local geometry structure of data manifold and learning a specified eigentransformation model for each observation image. Firs...
متن کاملHallucinating Face by Eigentransformation with Distortion Reduction
In this paper, we propose a face hallucination method using eigentransformation with distortion reduction. Different from most of the proposed methods based on probabilistic models, this method views hallucination as a transformation between different image styles. We use Principal Component Analysis (PCA) to fit the input face image as a linear combination of the lowresolution face images in t...
متن کاملNoise Face Image Hallucination via Data-Driven Local Eigentransformation
Face hallucination refers to inferring an High-Resolution (HR) face image from the input Low-Resolution (LR) one. It plays a vital role in LR face recognition by both manual and computer. The eigentransformation method based on Principal Component Analysis (PCA), which represents face image as a linear combination of the eigenfaces, has attracted considerable interests because of its simplicity...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 93 شماره
صفحات -
تاریخ انتشار 2013